Kinematic Self-Replicating Machines

© 2004 Robert A. Freitas Jr. and Ralph C. Merkle. All Rights Reserved.

Robert A. Freitas Jr., Ralph C. Merkle, Kinematic Self-Replicating Machines, Landes Bioscience, Georgetown, TX, 2004.


 

References 1400-1499

1400. N. Khazanovich, J.R. Granja, D.E. McRee, R.A. Milligan, M.R. Ghadiri, “Nanoscale tubular ensembles with specified internal diameters: design of a self-assembled nanotube with a 13-Angstrom pore,” J. Am. Chem. Soc. 116(1994):6011-6012.

1401. M. Reza Ghadiri, Juan R. Granja, Lukas K. Buehler, “Artificial transmembrane ion channels from self-assembling peptide nanotubes,” Nature 369(26 May 1994):301-304; 276-277 (comment).

1402. J.R. Granja, M.R. Ghadiri, “Channel-mediated transport of glucose across lipid bilayers,” J. Am. Chem. Soc. 116(1994):10785-10786.

1403. Th. Zemb, M. Dubois, B. Deme, Th. Gulik-Krzywicki, “Self-assembly of flat nanodiscs in salt-free catanionic surfactant solutions,” Science 283(5 February 1999):816-819.

1404. Steve Santoso, Wonmuk Hwang, Hyman Hartman, Shuguang Zhang, “Self-assembly of surfactant-like peptides with variable glycine tails to form nanotubes and nanovesicles,” Nano Letters 2(July 2002):687-691; http://cba.mit.edu/publications/02.07.santoso.pdf. See also: Sylvain Vauthey, Steve Santoso, Haiyan Gong, Nicki Watson, Shuguang Zhang, “Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles,” Proc. Natl. Acad. Sci. (USA) 99(2002):5355-5360; http://www.pnas.org/cgi/content/full/99/8/5355

1405. Shuguang Zhang, Davide M. Marini, Wonmuk Hwang, Steve Santoso, “Design of nanostructured biological materials through self-assembly of peptides and proteins,” Curr. Opin. Chem. Biol. 6(2002):865-871; http://cba.mit.edu/publications/02.00.zhang.pdf

1406. Céline Valéry, Maïté Paternostre, Bruno Robert, Thaddée Gulik-Krzywicki, Theyencheri Narayanan, Jean-Claude Dedieu, Gérard Keller, Maria-Luisa Torres, Roland Cherif-Cheikh, Pilar Calvo, Franck Artzner, “Biomimetic organization: Octapeptide self-assembly into nanotubes of viral capsid-like dimension,” Proc. Natl. Acad. Sci. (USA) 100(2003):10258-10262; http://www.pnas.org/cgi/content/full/100/18/10258

1407. Takashi Yokoyama, Shiyoshi Yokoyama, Toshiya Kamikado, Yoshishige Okuno, Shinro Mashiko, “Selective assembly on a surface of supramolecular aggregates with controlled size and shape,” Nature 413(11 October 2001):619-621.

1408. Maxwell J. Crossley, University of Sydney, Australia; http://www.chem.usyd.edu.au/~crossley/

1409. Pall Thordarson, Annie Marquis, Maxwell J. Crossley, “The synthesis and studies towards the self-replication of bis(capped porphyrins),” Org. Biomol. Chem. 1(2003):1216-1225. See also: Pall Thordarson, “Molecular Recognition of Bis-porphyrins: Towards Self-replication and Templated Synthesis,” Ph.D. Dissertation, School of Chemistry, University of Sydney, Australia 2000.

1410. H. Fenniri, P. Mathivanan, K.A. Vidale, D.M. Sherman, K. Hallenga, K.V. Wood, J.G. Stowell, “Helical rosette nanotubes: design, self-assembly, and characterization,” J. Am. Chem. Soc. 123(2001):3854-3855.

1411. Hicham Fenniri, Bo-Liang Deng, Jesus G. Moralez, Kathryn M. Gorman, Karen Jemio-Bedregal, “Self-assembled rosette nanotubes with predefined chemical and physical properties,” paper presented at the 10th Foresight Conference on Molecular Nanotechnology, October 2002; http://www.foresight.org/Conferences/MNT10/Abstracts/Fenniri/index.html (abstract)

1412. Hicham Fenniri, Bo-Liang Deng, Alexander E. Ribbe, Klaas Hallenga, Jaby Jacob, Pappannan Thiyagarajan, “Entropically driven self-assembly of multichannel rosette nanotubes,” Proc. Natl. Acad. Sci. (USA) 99(2002):6487-6492; http://www.chem.purdue.edu/hf/PNASpaper.pdf and http://www.pnas.org/papbyrecent.shtml

1413. Hicham Fenniri, Bo-Liang Deng, Alexander E. Ribbe, “Helical rosette nanotubes with tunable chiroptical properties,” J. Am. Chem. Soc. 124(2002):11064-11072; http://www.chem.purdue.edu/hf/Fenniri-JACS-082402.pdf

1414. M.S. Shchepinov, K.U. Mir, J.K. Elder, M.D. Frank-Kamenetskii, E.M. Southern, “Oligonucleotide dendrimers: stable nano-structures,” Nucleic Acids Res. 27(1 August 1999):3035-3041, http://nar.oupjournals.org/cgi/content/full/27/15/3035; T.W. Nilsen, J. Grayzel, W. Prensky, “Dendritic nucleic acid structures,” J. Theor. Biol. 187(21 July 1997):273-284.

1415. T. Horn, M.S. Urdea, “Forks and combs and DNA: The synthesis of branched oligodeoxyribonucleotides,” Nucleic Acid Res. 17(12 September 1989):6959-6967.

1416. Christof M. Niemeyer, “DNA as a material for nanotechnology,” Angew. Chem. Int. Ed. Engl. 36(1997):585-587.

1417. Steven S. Smith, Luming Niu, David J. Baker, John A. Wendel, Susan E. Kane, Darrin S. Joy, “Nucleoprotein-based nanoscale assembly,” Proc. Natl. Acad. Sci. 94(18 March 1997):2162-2167; http://www.pnas.org/cgi/content/full/94/6/2162

1418. Masad J. Damha, Kanjana Ganeshan, Robert H.E. Hudson, Steven V. Zabarylo, “Solid-phase synthesis of branched oligoribonucleotides related to messenger RNA splicing intermediates,” Nucleic Acid Res. 20(December 1992):6565-6573.

1419. Paul A. Giannaris, Masad J. Damha, “Oligoribonucleotides containing 2’-5’-phosphodiester linkages exhibit binding selectivity for 3’-5’-RNA over 3’-5’-ssDNA,” Nucleic Acid Res. 21(October 1993):4742-4749.

1420. R.H.E. Hudson, M.J. Damha, “Nucleic acid dendrimers -- novel biopolymer structures,” J. Am. Chem. Soc. 115(24 March 1993):2119-2124.

1421. A.H. Uddin, M.A. Roman, J. Anderson, M.J. Damha, “A novel N3-functionalized thymidine linker for the stabilization of triple helical DNA,” Chem. Commun. (1996):171-172.

1422. T.C. Marsh, E.R. Henderson, “G-wires: Self-assembly of a telomeric oligonucleotide, d(GGGGTTGGGG), into large superstructures,” Biochemistry 33(6 September 1994):10718-10724.

1423. T.C. Marsh, J. Vesenka, E.R. Henderson, “A new DNA nanostructure, the G-wire, imaged by scanning probe microscopy,” Nucl. Acids Res. 23(25 February 1995):696-700.

1424. J. Vesekna, T. Marsh, R. Miller, E. Henderson, “Atomic force microscopy reconstruction of G-wire DNA,” J. Vac. Sci. Technol. B 14(1996):1413-1417.

1425. James Vesenka, Eric Henderson, Thomas Marsh, “Construction and examination of ‘G-wire’ DNA,” DNA-Based Molecular Construction: International Workshop on DNA-Based Molecular Construction, Jena, Germany, 23-25 May 2002; AIP Conference Proceedings, Vol. 640.1, 12 November 2002, pp. 99-109; http://content.aip.org/APCPCS/v640/i1/99_1.html

1426. Lars Henning Eckardt, Kai Naumann, Wolf Matthias Pankau, Günter von Kiedrowski, “Nanorobots – From Fiction to Science,” paper O-47, XIIth Intl. Symp. on Supramolecular Chemistry, Eilat, Israel, 6-11 October 2002; http://chemsg7.tau.ac.il/~issc/Abs1/Kiedrowski.pdf

1427. A. Dorenbeck, M. Scheffler, M. Wüstefeld, G. von Kiedrowski, “Noncovalent synthesis of a tetrahedral nanoscaffold from 3’-trisoligonucleotidyls with individually defined sequences,” Angew. Chem. Int. Ed. Engl., 2003, in press.

1428. Guenter von Kiedrowski, Lars-Henning Eckardt, Kai Naumann, Wolf Matthias Pankau, Malte Reimold, Michael Rein, “Toward replicatable, multifunctional, nanoscaffolded machines. A chemical manifesto,” Pure Appl. Chem. 75(2003):609-619.

1429. Lars Henning Eckardt, Kai Naumann, Wolf Matthias Pankau, Michael Rein, Markus Schweitzer, Norbert Windhab, Günter von Kiedrowski, “DNA nanotechnology: Chemical copying of connectivity,” Nature 420(21 November 2002):286; http://www.nature.com/nlink/v420/n6913/abs/420286a_fs.html

1430. B.G. Bag, G. von Kiedrowski, “Stepwise Replication of a Troger’s Base Analogue,” Angew. Chem. Int. Ed. Engl. 38(16 December 1999):3713-3714.

1431. D. Liu, S.H. Park, J.H. Reif, T.H. LaBean, “DNA nanotubes self-assembled from triple-crossover tiles as templates for conductive nanowires,” Proc. Natl. Acad. Sci. (USA) 101(20 January 2004):717-722; http://www.pnas.org/cgi/content/full/101/3/717

1432. T.W. Nilsen, J. Grayzel, W. Prensky, “Dendritic nucleic acid structures,” J. Theor. Biol. 187(21 July 1997):273-284.

1433. Y. Li, Y.D. Tseng, S.Y. Kwon, L. D’Espaux, J.S. Bunch, P.L. McEuen, D. Luo, “Controlled assembly of dendrimer-like DNA,” Nat. Mater. 3(January 2004):38-42.

1434. H. Yan, X. Zhang, Z. Shen, N.C. Seeman, “A robust DNA mechanical device controlled by hybridization topology,” Nature 415(3 January 2002):62-65.

1435. N.C. Seeman, A.M. Belcher, “Emulating biology: building nanostructures from the bottom up,” Proc. Natl. Acad. Sci. (USA) 99(30 April 2002):6451-6455 (Suppl 2); http://www.pnas.org/cgi/content/full/99/suppl_2/6451

1436. Chengde Mao, Weiqiong Sun, Zhiyon Shen, Nadrian C. Seeman, “A nanomechanical device based on the B-Z transition of DNA,” Nature 397(14 January 1999):144-146.

1437. Erik Winfree, Furong Liu, Lisa A. Wenzler, Nadrian C. Seeman, “Design and self-assembly of two-dimensional DNA crystals,” Nature 394(6 August 1998):539-544; http://www.dna.caltech.edu/Papers/lattice.pdf or http://www.nature.com/server-java/Propub/nature/v394n6693

1438. N.C. Seeman, “Nucleic acid junctions: Building blocks for genetic engineering in three dimensions,” in R.H. Sarma, ed., Biomolecular Stereodynamics, Adenine Press, New York, 1981, pp. 269-277.

1439. Nadrian C. Seeman et al., “New Motifs in DNA Nanotechnology,” Nanotechnology 9(September 1998):257-273.

1440. Junghuei Chen, Nadrian C. Seeman, “Synthesis from DNA of a molecule with the connectivity of a cube,” Nature 350(18 April 1991):631-633.

1441. C. Mao, T.H. LaBean, J.H. Relf, N.C. Seeman, “Logical computation using algorithmic self-assembly of DNA triple-crossover molecules,” Nature 407(28 September 2000):493-496.

1442. A. Carbone, N.C. Seeman, “Circuits and programmable self-assembling DNA structures,” Proc. Natl. Acad. Sci. (USA) 99(1 October 2002):12577-12582; http://www.pnas.org/cgi/content/full/99/20/12577

1443. Yuwen Zhang, Nadrian C. Seeman, “Construction of a DNA-Truncated Octahedron,” J. Am. Chem. Soc. 116(1994):1661-1669.

1444. Nadrian C. Seeman et al., “New Motifs in DNA Nanotechnology,” Nanotechnology 9(September 1998):257-273.

1445. N.C. Seeman, “DNA in a material world,” Nature 421(23 January 2003):427-431.

1446. T.H. LaBean, H. Yan, J. Kopatsch, F. Liu, E. Winfree, J.H. Reif, N.C. Seeman, “The construction, analysis, ligation and self-assembly of DNA triple crossover complexes,” J. Am. Chem. Soc. 122(2000):1848-1860; http://www.cs.duke.edu/~reif/paper/DNAtiling/tilings/JACS.pdf or http://www.dna.caltech.edu/Papers/triplex.pdf

1447. N.C. Seeman, “DNA nanotechnology: Novel DNA constructions,” Annu. Rev. Biophys. Biomol. Struct. 27(1998):225-248.

1448. Ned Seeman’s Laboratory Home Page; http://seemanlab4.chem.nyu.edu/homepage.html

1449. N.C. Seeman, “At the crossroads of chemistry, biology, and materials: structural DNA nanotechnology,” Chem. Biol. 10(December 2003):1151-1159.

1450. N.C. Seeman, “Construction of three-dimensional stick figures from branched DNA,” DNA Cell Biol. 10(September 1991):475-486.

1451. C.M. Niemeyer, T. Sano, C.L. Smith, C.R. Cantor, “Oligonucleotide-directed self-assembly of proteins: semisynthetic DNA – streptavidin hybrid molecules as connectors for the generation of macroscopic arrays and the construction of supramolecular bioconjugates,” Nucleic Acids Res. 22(25 December 1994):5530-5539.

1452. John A. Wendel, Steven S. Smith, “Uracil as an alternative to 5-fluorocytosine in addressable protein targeting,” Nanotechnology 9(September 1998):297-304.

1453. C.M. Niemeyer, B. Ceyhan, S. Gao, L. Chi, S. Peschel, U. Simon, “Site-Selective Immobilization of Gold Nanoparticles Functionalized with DNA Oligomers,” Colloid Polym. Sci. 279(2001):68-72.

1454. C.M. Niemeyer, B. Ceyhan, “DNA-directed functionalization of colloidal gold with proteins,” Angew. Chem. Int. Ed. 40(2001):3685-3688.

1455. C.M. Niemeyer, J. Koehler, C. Wuerdemann, “DNA-directed assembly of bienzymic complexes from in-vivo biotinylated NAD(P)H:FMN oxidoreductase and luciferase,” Chem. BioChem. 3(2002):242-245.

1456. Steven S. Smith, “Designs for the self-assembly of open and closed macromolecular structures and a molecular switch using DNA methyltransferases to order proteins on nucleic acid scaffolds,” Nanotechnology 13(June 2002):413-419.

1457. Steven S. Smith, “Nucleoprotein assemblies,” in H.S. Nalwa, ed., Encyclopedia of Nanoscience and Nanotechnology, Vol. X, American Scientific Publishers, 2003, pp. 1-10.

1458. N.C. Seeman, “Nucleic acid junctions and lattices,” J. Theor. Biol. 99(1982):237-247.

1459. M.E.A. Churchill, T.D. Tullius, N.R. Kallenbach, N.C. Seeman, “A Holliday Recombination Intermediate is Twofold Symmetric,” Proc. Natl. Acad. Sci. USA 85(1988):4653-4656. See also: M. Susman, B. Engels, “Strand Exchange and Translation of Holliday Junction,” 27 July 1997; http://www.wisc.edu/genetics/Holliday/holliday3D.html

1460. P.J. Hagerman, “Flexibility of DNA,” Ann. Rev. Biophys. Biophys. Chem. 17(1988):265-286.

1461. N.C. Seeman, J.M. Rosenberg, A. Rich, “Sequence specific recognition of double helical nucleic acids by proteins,” Proc. Natl. Acad. Sci. USA 73(1976):804-808.

1462. J.H. Chen, N.R. Kallenbach, N.C. Seeman, “A specific quadrilateral synthesized from DNA branched junctions,” J. Am. Chem. Soc. 111(1989):6402-6407.

1463. Y. Zhang, N.C. Seeman, “A solid-support methodology for the construction of geometrical objects from DNA,” J. Am. Chem. Soc. 114(1992):2656-2663.

1464. T.J. Fu, N.C. Seeman, “DNA double crossover structures,” Biochemistry 32(1993):3211-3220.

1465. X. Li, X. Yang, J. Qi, N.C. Seeman, “Antiparallel DNA double crossover molecules as components for nanoconstruction,” J. Am. Chem. Soc. 118(1996):6131-6140.

1466. W.M. Shih, J.D. Quispe, G.F. Joyce, “A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron,” Nature 427(12 February 2004):618-621; http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=14961116&dopt=Abstract

1467. Liz Kalaugher, “DNA folds into nano-octahedra,” NanoTechWeb, 11 February 2004; http://www.nanotechweb.org/articles/news/3/2/5/1

1468. D.D. MacNicol, J.J. McKendrick, D.R. Wilson, “Clathrates and molecular inclusion phenomena,” Chem. Soc. Rev. 7(1978):65-87.

1469. M. Simard, S. Dan, J.D. Wuest, “Use of hydrogen bonds to control molecular aggregation. Self-assembly of three-dimensional networks with large chambers,” J. Am. Chem. Soc. 113(1991):4696-4698.

1470. Markus Krummenacker, “Steps towards molecular manufacturing,” Chem. Design Autom. News 9(January 1994):1, 29-39; see also: http://www.ai.sri.com/~kr/nano/cda-news/cda-news.html

1471. H. van Bekkum, E.M. Flanigen, J.C. Jansen, eds., Introduction to Zeolite Science and Practice, Elsevier, Amsterdam, 1991. See also: W.M. Meier, D.H. Olson, C. Baerlocher, Atlas of Zeolite Structure Types, Elsevier, Boston MA, 1996.

1472. George T. Kerr, “Synthetic zeolites,” Sci. Amer. 261(July 1989):100-105. See also: John Meurig Thomas, “Solid acid catalysts,” Sci. Amer. 266(April 1992):112-118.

1473. N. Herron, “Catalytic aspects of inclusion in zeolites,” in J.L. Atwood, J.E.D. Davies, D.D. MacNicol, Inclusion Compounds, Vol. 5, Oxford University Press, Cambridge, 1991.

1474. Robert Pool, “The smallest chemical plants,” Science 263(25 March 1994):1698-1699.

1475. D.W. Lewis, C.M. Freeman, C.R.A. Catlow, “Predicting the templating ability of organic additives for the synthesis of microporous materials,” J. Phys. Chem. 99(1995):11194-11202.

1476. Mark E. Davis, “Design for sieving,” Nature 382(15 August 1996):583-584.

1477. Victoria A. Russell, Cara C. Evans, Wenjie Li, Michael D. Ward, “Nanoporous molecular sandwiches: pillared two-dimensional hydrogen-bonded networks with adjustable porosity,” Science 276(25 April 1997):575-579. See also: Steven C. Zimmerman, “Putting molecules behind bars,” Science 276(25 April 1997):543-544.

1478. Wuzong Zhou, J.M. Thomas, D.S. Shephard, B.F.G. Johnson, D. Ozkaya, T. Maschmeyer, R.G. Bell, Q. Ge, “Ordering of ruthenium cluster carbonyls in mesoporous silica,” Science 280(1 May 1998):705-708.

1479. Seong Su Kim, Wenzhong Zhang, Thomas J. Pinnavaia, “Ultrastable mesostructured silica vesicles,” Science 282(13 November 1998):1302-1305.

1480. P.J. Fagan, M.D. Ward, J.C. Calabrese, “Molecular engineering of solid-state materials: Organometallic building blocks,” J. Am. Chem. Soc. 111(1989):1698-1719.

1481. Stuart R. Batten, Bernard F. Hoskins, Richard Robson, “Two interpenetrating 3-D networks...,” J. Am. Chem. Soc. 117(17 May 1995):5385-5386.

1482. D.T. Bong, M.R. Ghadiri, “Self-assembling cyclic peptide cylinders as nuclei for crystal engineering,” Angew. Chem. Int. Ed. Engl. 40(1 June 2001):2163-2166.

1483. M.J. Zaworotko, “Crystal engineering of diamondoid networks,” Chem. Soc. Rev. 23(1994):283-288.

1484. Alfons van Blaaderen, Rene Ruel, Pierre Wiltzius, “Template-directed colloidal crystallization,” Nature 385(23 January 1997):321-324.

1485. X. Bu, P. Feng, G.D. Stucky, “Large-cage zeolite structures with multidimensional 12-ring channels,” Science 278(19 December 1997):2080-2085.

1486. Stephen S.-Y. Chui, Samuel M.-F. Lo, Jonathan P.H. Charmant, A. Guy Orpen, Ian D. Williams, “A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n,” Science 283(19 February 1999):1148-1150.

1487. Brian Korgel, Donald Fitzmaurice, “Self-assembly of silver nanocrystals into two-dimensional nanowire arrays,” Advanced Materials 10(1998):610 (cover).

1488. Peidong Yang, Tao Deng, Dongyuan Zhao, Pingyun Feng, David Pine, Bradley F. Chmelka, George M. Whitesides, Galen D. Stucky, “Hierarchically ordered oxides,” Science 282(18 December 1998):2244-2246.

1489. Franz X. Redl, Kyung Sang Cho, Christopher B. Murray, Stephen O’Brien, “Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots,” Nature 423(26 June 2003):968-971, http://www.nature.com/cgi-taf/DynaPage.taf?file=/nature/journal/v423/n6943/abs/nature01702_fs.html (abstract); “Scientists Announce First 3-D Assembly of Magnetic and Semiconducting Nanoparticles,” NSF Press Release NSF PR 03-68, 25 June 2003; http://www.nsf.gov/od/lpa/news/03/pr0368.htm. See images and animations at http://domino.research.ibm.com/Comm/bios.nsf/pages/selfassembly.html

1490. Leslie A. Bursill, Laure N. Bourgeois, “Polyhedral nano-clusters with the potential for self-replication,” Mod. Phys. Lett. B 13(30 April 1999):271-274.

1491. Z. Xu, J.S. Moore, “Synthesis and characterization of a high molecular weight stiff dendrimer,” Angew. Chem. 105(1993):261; Angew. Chem. Int. Ed. Engl. 32(1993):246-248.

1492. Z. Xu, J.S. Moore, “Rapid construction of large-size phenylacetylene dendrimers up to 12.5 nanometers in molecular diameter,” Angew. Chem. 105(1993):1394; Angew. Chem. Int. Ed. Engl. 32(1993):1354-1357.

1493. Z. Xu, B. Kyan, J.S. Moore, “Stiff dendritic macromolecules based on phenylacetylenes,” in G.R. Newkome, ed., Advances in Dendritic Macromolecules, Volume 1, JAI Press, Greenwich CT, 1994, pp. 69-104.

1494. Donald A. Tomalia, “Dendrimer molecules,” Sci. Amer. 272(May 1995):62-66.

1495. T. Kawaguchi, K.L. Walker, C.L. Wilkins, J.S. Moore, “Double exponential dendrimer growth,” J. Am. Chem. Soc. 117(1995):2159-2165.

1496. C. Devadoss, P. Bharathi, J.S. Moore, “Energy transfer in dendritic macromolecules: Molecular size effects and the role of an energy gradient,” J. Am. Chem. Soc. 118(1996):9635-9644.

1497. D.J. Pesak, J.S. Moore, T.E. Wheat, “Synthesis and characterization of water-soluble dendritic macromolecules with a stiff hydrocarbon interior,” Macromolecules 30(1997):6467-6482.

1498. M.R. Shortreed, S.F. Swallen, Z.-Y. Shi, W. Tan, Z. Xu, C. Devadoss, J.S. Moore, R. Kopelman, “Directed energy transfer funnels in dendrimeric antenna supermolecules,” J. Phys. Chem. 101(1997):6318-6322.

1499. O.A. Matthews, A.N. Shipway, J.F. Stoddart, “Dendrimers – branching out from curiosities into new technologies,” Prog. Poly. Sci. 23(1998):1-56.

 


Last updated on 1 August 2005