Kinematic Self-Replicating Machines

© 2004 Robert A. Freitas Jr. and Ralph C. Merkle. All Rights Reserved.

Robert A. Freitas Jr., Ralph C. Merkle, Kinematic Self-Replicating Machines, Landes Bioscience, Georgetown, TX, 2004.


 

References 2000-2099

2000. Nadrian C. Seeman, personal communication to Robert A. Freitas Jr., 8 August 2003.

2001. Nadrian C. Seeman, “Synthetic DNA Topology,” in Jean-Pierre Sauvage, C. Dietrich-Buchecker, eds., Molecular Catenanes, Rotaxanes and Knots, Wiley-VCH Verlagsgesellschaft Mbh, Weinheim, 1999, pp. 323-356.

2002. J. Fritz, M.K. Baller, H.P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Guntherodt, Ch. Gerber, J.K. Gimzewski, “Translating biomolecular recognition into nanomechanics,” Science 288(14 April 2000):316-318; http://www.sciencemag.org/cgi/content/full/288/5464/316

2003. Guanghua Wu, Haifeng Ji, Karolyn Hansen, Thomas Thundat, Ram Datar, Richard Cote, Michael F. Hagan, Arup K. Chakraborty, Arunava Majumdar, “Origin of nanomechanical cantilever motion generated from biomolecular interactions,” Proc. Natl. Acad. Sci. (USA) 98(13 February 2001):1560-1564; http://www.pnas.org/cgi/content/full/98/4/1560

2004. A. Majumdar, “Bioassays based on molecular nanomechanics,” Dis. Markers 18(2002):167-174.

2005. F. Liu, Y. Zhang, Z. Ou-Yang, “Flexoelectric origin of nanomechanic deflection in DNA-microcantilever system,” Biosens. Bioelectron. 18(May 2003):655-660.

2006. K.M. Hansen, H.F. Ji, G. Wu, R. Datar, R. Cote, A. Majumdar, T. Thundat, “Cantilever-based optical deflection assay for discrimination of DNA single-nucleotide mismatches,” Anal. Chem. 73(1 April 2001):1567-1571.

2007. Guanghua Wu, Ram H. Datar, Karolyn M. Hansen, Thomas Thundat, Richard J. Cote, Arun Majumdar, “Bioassay of prostate-specific antigen (PSA) using microcantilevers,” Nat. Biotechnol. 19(1 September 2001):856-860.

2008. R. McKendry, J. Zhang, Y. Arntz, T. Strunz, M. Hegner, H.P. Lang, M.K. Baller, U. Certa, E. Meyer, H.-J. Güntherodt, Ch. Gerber, “Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array,” Proc. Nat. Acad. Sci. (USA) 99(2002):9783-9787; http://monet.physik.unibas.ch/~lang/pub/pnas2002.pdf

2009. Y. Arntz, J.D. Seelig, H.P. Lang, J. Zhang, P. Hunziker, J.-P. Ramseyer, E.
Meyer, M. Hegner, Ch. Gerber, “Label-free protein assay based on a nanomechanical cantilever array ,” Nanotechnology 14(2003):86-90; http://monet.physik.unibas.ch/nose/t30119.pdf

2010. Patrizia Alberti, Jean-Louis Mergny, “DNA duplex-quadruplex exchange as the basis for a nanomolecular machine,” Proc. Natl. Acad. Sci. (USA) 100(18 February 2003):1569-1573; http://www.pnas.org/cgi/content/full/100/4/1569

2011. Jianwei J. Li, Weihong Tan, “A single DNA molecule nanomotor,” Nano Letters 2(April 2002):315-318. See also: “Nanomotor Made From Single DNA Molecule Is A First,” UniSci News, 16 May 2002; reports at http://unisci.com/stories/20022/0516021.htm and http://www.imm.org/Reports/Rep030.html#DNAmotor

2012. Bernard Yurke, Andrew J. Turberfield, Allen P. Mills, Jr., Friedrich C. Simmel, Jennifer L. Neumann, “A DNA-fuelled molecular machine made of DNA,” Nature 406(10 August 2000):605-608; see also http://www.bell-labs.com/org/physicalsciences/pubs/yurke01.pdf

2013. Friedrich C. Simmel, Bernard Yurke, “Using DNA to construct and power a nanoactuator,” Phys. Rev. E 63(April 2001):041913.

2014. Friedrich C. Simmel, Bernard Yurke, “A DNA-based molecular device switchable between three distinct mechanical states,” Appl. Phys. Lett. 80(4 February 2002):883-885; http://www.ee.sc.edu/research/moletronics/teaching/MolecularElectronics2003/Homework_files/homework6_files/groupe2.pdf

2015. F.C. Simmel, B. Yurke, R.J. Sanyal, “Operation kinetics of a DNA-based molecular switch,” J. Nanosci. Nanotech. 2(June-August 2002):383-390.

2016. Andrew J. Turberfield, J.C. Mitchell, Bernard Yurke, Allen P. Mills Jr., M.I. Blakey, Friedrich C. Simmel, “DNA fuel for free-running nanomachines,” Phys. Rev. Lett. 90(21 March 2003):118102.

2017. R.C. Merkle, “Biotechnology as a route to nanotechnology,” Trends in Biotechnology 17(July 1999):271-274; http://www.merkle.com/papers/bionano.html

2018. L. Feng, S.H. Park, J.H. Reif, H. Yan, “A two-state DNA lattice switched by DNA nanoactuator,” Angew. Chem. Intl. Ed. 42(2003):4342-4346.

2019. Hao Yan, Sung Ha Park, Gleb Finkelstein, John H. Reif, Thomas H. LaBean, “DNA-templated self-assembly of protein arrays and highly conductive nanowires,” Science 301 (26 September 2003):1882-1884; http://www.sciencemag.org/cgi/content/short/301/5641/1882. See also: Kimberly Patch, “DNA forms nano waffles,” Technology Research News, 22/29 October 2003; http://www.trnmag.com/Stories/2003/102203/DNA_forms_nano_waffles_102203.html

2020. Hao Yan, Thomas H. LaBean, Liping Feng, John H. Reif, “Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices,” Proc. Natl. Acad. Sci. (USA) 100(2003):8103.

2021. Richard T. Pomerantz, Michael Anikin, Jordanka Zlatanova, William T. McAllister, “RNA Polymerase as an Information-Dependent Molecular Motor,” 11th Foresight Conference on Molecular Nanotechnology, Palo Alto, CA, 9-12 October 2003; http://www.foresight.org/Conferences/MNT11/Abstracts/Pomerantz/index.html

2022. John H. Reif, “The design of autonomous DNA nanomechanical devices: walking and rolling DNA,” The 8th International Meeting on DNA Based Computers (DNA 8), Sapporo, Japan, 10-13 June 2002, Lecture Notes in Computer Science, New York, 2002; to appear in Natural Computing, DNA8 special issue, 2003.; http://www.cs.duke.edu/~reif/paper/DNAmotor/DNAmotor.pdf

2023. Liping Feng, Sung Ha Park, Yan Liu, Yan Liu, John H. Reif, Hao Yan, “A two state DNA lattice actuated by DNA motors,” submitted for publication, 2003; http://www.cs.duke.edu/~reif/vita/topics/biomolecular.html

2024. Wolfgang Fritzsche, “DNA-based molecular construction,” International Workshop, 23-25 May 2002, Jena, Germany, Institute for Physical High Technology; http://www.ipht-jena.de/BEREICH_3/molnano/DNA2002/pdf/program.pdf

2025. C.A. Mirkin, “Programming the assembly of two- and three-dimensional architectures with DNA and nanoscale inorganic building blocks,” Inorg. Chem. 39(2000):2258; http://pubs.acs.org/CHECKCCIP-998779135/isubscribe/journals/inocaj/jtext.cgi?inocaj/39/i11/html/ic991123r.html

2026. Robert F. Service, “Nanotechnology: Biology Offers Nanotechs a Helping Hand,” 20 December 2002; http://www.sciencemag.org/cgi/content/full/298/5602/2322?etoc

2027. Steven A. Benner, et al, “Redesigning nucleic acids,” Pure Appl. Chem. 70(1998):263-266.

2028. S. Nakashima, N. Matsuura, F. Nagatsugi, M. Maeda, S. Sasaki, “Synthesis and evaluation of oligonucleotides incorporating novel artificial nucleobases for the selective formation of non-natural type triplexes,” Nucleic Acids Symp. Ser. 37(1997):33-34.

2029. M. Berger, S.D. Luzzi, A.A. Henry, Floyd E. Romesberg, “Stability and selectivity of unnatural DNA with five-membered-ring nucleobase analogues,” J. Am. Chem. Soc. 124(20 February 2002):1222-1226.

2030. S. Obika, Y. Hari, M. Sekiguchi, T. Imanishi, “Stable oligonucleotide-directed triplex formation at target sites with CG interruptions: strong sequence-specific recognition by 2’,4’-bridged nucleic-acid-containing 2-pyridones under physiological conditions,” Chemistry 8(18 October 2002):4796-4802.

2031. T. Kanai, M. Ichino, T. Kojima, “Pyrimidine nucleosides. II. The synthesis of unnatural pyrimidine nucleosides saturated at 5,6-double bond,” Chem. Pharm. Bull. (Tokyo) 17(April 1969):650-652.

2032. T. Fujiwara, M. Kimoto, H. Sugiyama, I. Hirao, S. Yokoyama, “Synthesis of 6-(2-thienyl)purine nucleoside derivatives that form unnatural base pairs with pyridin-2-one nucleosides,” Bioorg. Med. Chem. Lett. 11(20 August 2001):2221-2223.

2033. Y. Wu, M. Fa, E.L. Tae, P.G. Schultz, Floyd E. Romesberg, “Enzymatic phosphorylation of unnatural nucleosides,” J. Am. Chem. Soc. 124(11 December 2002):14626-14630.

2034. Markus Berger, Yiqin Wu, Anthony K. Ogawa, Dustin L. McMinn, Peter G. Schultz, Floyd E. Romesberg, “Universal bases for hybridization, replication and chain termination,” Nucleic Acids Res. 28(1 August 2000):2911-2914; http://nar.oupjournals.org/cgi/content/full/28/15/2911

2035. D. Loakes, “Survey and summary: The applications of universal DNA base analogues,” Nucleic Acids Res. 29(15 June 2001):2437-2447.

2036. A.J. Tackett, P.D. Morris, R. Dennis, T.E. Goodwin, K.D. Raney, “Unwinding of unnatural substrates by a DNA helicase,” Biochemistry 40(16 January 2001):543-548.

2037. P.E. Nielsen, M. Egholm, “An introduction to peptide nucleic acid,” Curr. Issues Mol. Biol. 1(1999):89-104; P.E. Nielsen, “Targeting double stranded DNA with peptide nucleic acid (PNA),” Curr. Med. Chem. 8(April 2001):545-550.

2038. P. Garner, B. Sherry, S. Moilanen, Y. Huang, “In vitro stability of alpha-helical peptide nucleic acids (alphaPNAs),” Bioorg. Med. Chem. Lett. 11(3 September 2001):2315-2317.

2039. J.C. Chaput, J.K. Ichida, J.W. Szostak, “DNA polymerase-mediated DNA synthesis on a TNA template,” J. Am. Chem. Soc. 125(29 January 2003):856-857. See also: Philip Ball, “DNA look-alike fools enzyme: Artificial molecule acts as template for DNA,” Nature ScienceUpdate, 4 February 2003; http://www.nature.com/nsu/030203/030203-1.html

2040. C.Y. Switzer, S.E. Moroney, Steven A. Benner, “Enzymatic incorporation of a new base pair into DNA, and RNA,” J. Am. Chem. Soc. 111(1989):8322-8323.

2041. J.A. Piccirilli, T. Krauch, S.E. Moroney, Steven A. Benner, “Enzymatic incorporation of a new base pair into DNA and RNA extends the genetic alphabet,” Nature 343(1990):33-37.

2042. E. Szathmary, “What is the optimum size for the genetic alphabet?” Proc. Natl. Acad. Sci. (USA) 89(1992):2614-2618.

2043. M.J. Lutz, H.A. Held, M. Hottiger, U. Hübscher, Steven A. Benner, “Differential discrimination of DNA polymerases for variants of the non-standard nucleobase pair between xanthosine, and 2,4-diaminopyrimidine, two components of an expanded genetic alphabet,” Nucl. Acids Res. 24(1996):1308-1313.

2044. D.A. MacDonaill, “Tautomerism as a constraint on the composition of alternative nucleotide alphabets,” in Russell K. Standish, Hussein A. Abbass, Mark A. Bedau, eds., Artificial Life VIII, 8th Intl. Conf. on the Simulation and Synthesis of Living Systems, University of New South Wales, Australia, 9-13 December 2002, MIT Press, Cambridge, MA, 2000, pp. 106-110; http://parallel.acsu.unsw.edu.au/complex/alife8/proceedings/sub3188.pdf

2045. Robert J. Bradbury, “Protein based assembly of nanoscale parts,” Aeiveos Corp., September 2001, http://www.aeiveos.com/~bradbury/Papers/PBAoNP.html

2046. Andreas Holzenburg, Nigel S. Scrutton, “Enzyme-catalyzed electron and radical transfer,” Subcellular Biochemistry, Vol. 35, Plenum Publ. Corp, New York, 2000.

2047. Robert A. Freitas Jr., “A novel pathway to first-generation molecular assemblers,” Aeiveos Corp., 18 November 1998; http://www.aeiveos.com/~bradbury/Papers/ANPtFGMA.html; “Mechanoenzymes: A non-SPM-based approach to molecular mechanoassembly,” privately circulated document, 21 February 2000; http://www.aeiveos.com/~bradbury/Authors/Engineering/Freitas-RA/MAnSPMBAtMM.html

2048. Tom R. Craver, “Softening the blow,” Nanotechnology Magazine Pre-Press 2(April 1996):9-11.

2049. Patrick Cramer, David A. Bushnell, Roger D. Kornberg, “Structural basis of transcription: RNA polymerase II at 2.8 Angstrom resolution,” Science 292(8 June 2001):1863-1876; Averell L. Gnatt, Patrick Cramer, Jianhua Fu, David A. Bushnell, Roger D. Kornberg, “Structural basis of transcription: An RNA polymerase II elongation complex at 3.3 A resolution,” Science 292(8 June 2001):1876-1882, 1844-1846 (comment); Science 292(20 April 2001):411-414 (comment).

2050. P.A. Lohse, J.W. Szostak, “Ribozyme-catalyzed amino-acid transfer reactions,” Nature 381(30 May 1996):442-444.

2051. A.J. Hager, J.D. Pollard, J.W. Szostak, “Ribozymes: aiming at RNA replication and protein synthesis,” Chem. Biol. 3(September 1996):717-725.

2052. G.A. Soukup, R.R. Breaker, “Nucleic acid molecular switches,” Trends Biotechnol. 17(December 1999):469-476.

2053. M. Warashina, T. Kuwabara, K. Taira, “Working at the cutting edge: the creation of allosteric ribozymes,” Structure Fold Des. 8(15 November 2000):R207-R212; T. Kuwabara, M. Warashina, K. Taira, “Allosterically controllable ribozymes with biosensor functions,” Curr. Opin. Chem. Biol. 4(December 2000):669-677.

2054. Wendy K. Johnston, Peter J. Unrau, Michael S. Lawrence, Margaret E. Glasner, David P. Bartel, “RNA-catalyzed RNA polymerization: accurate and general RNA-templated primer extension,” Science 292(18 May 2001):1319-1325, 1278 (comment).

2055. L. Masip, J.L. Pan, S. Haldar, J.E. Penner-Hahn, M.P. DeLisa, G. Georgiou, J.C. Bardwell, J.F. Collet, “An engineered pathway for the formation of protein disulfide bonds,” Science 303(20 February 2004):1185-1189. See also: “Evolution Caught In The Act,” Science Daily, 20 February 2004; http://www.sciencedaily.com/releases/2004/02/040220074308.htm

2056. Manfred Schliwa, Günther Woehlke, “Molecular motors,” Nature 422(17 April 2003):759-765; http://www.nature.com/cgi-taf/DynaPage.taf?file=/nature/journal/v422/n6933/full/nature01601_fs.html

2057. Thomas Scheibel, Raghuveer Parthasarathy, George Sawicki, Xiao-Min Lin, Heinrich Jaeger, Susan Lindquist, “Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition,” Proc. Natl. Acad. Sci. (USA) 100(15 April 2003):4527-4532. See also: http://www.wi.mit.edu/nap/features/nap_feature_nanowire2.html

2058. Meital Reches, Ehud Gazit, “Casting metal nanowires within discrete self-assembled peptide nanotubes,” Science 300(25 April 2003):625-627; http://www.sciencemag.org/cgi/content/full/300/5619/625

2059. P.M. Okamoto, B. Tripet, J. Litowski, R.S. Hodges, R.B. Vallee, “Multiple distinct coiled-coils are involved in dynamin self-assembly,” J. Biol. Chem. 274(9 April 1999):10277-10286.

2060. J.E. Hinshaw, “Dynamin spirals,” Curr. Opin. Struct. Biol. 9(April 1999):260-267.

2061. M.H. Stowell, B. Marks, P. Wigge, H.T. McMahon, “Nucleotide-dependent conformational changes in dynamin: evidence for a mechanochemical molecular spring,” Nat. Cell Biol. 1(May 1999):27-32.

2062. J.E. Hinshaw, “Dynamin and its role in membrane fission,” Annu. Rev. Cell Dev. Biol. 16(2000):483-519.

2063. M.A. McNiven, H. Cao, K.R. Pitts, Y. Yoon, “The dynamin family of mechanoenzymes: pinching in new places,” Trends Biochem. Sci. 25(March 2000):115-120.

2064. K. Lu, J. Jacob, P. Thiyagarajan, V.P. Conticello, D.G. Lynn, “Exploiting amyloid fibril lamination for nanotube self-assembly,” J. Am. Chem. Soc. 125(28 May 2003):6391-6393.

2065. G.R. Dieckmann, A.B. Dalton, P.A. Johnson, J. Razal, J. Chen, G.M. Giordano, E. Munoz, I.H. Musselman, R.H. Baughman, R.K. Draper, “Controlled assembly of carbon nanotubes by designed amphiphilic peptide helices,” J. Am. Chem. Soc. 125(19 February 2003):1770-1777.

2066. Jeffrey D. Hartgerink, Elia Beniash, Samuel I. Stupp, “Self-assembly and mineralization of peptide-amphiphile nanofibers,” Science 294(23 November 2001):1684-1688, 1635-1637 (comment); http://www.sciencemag.org/cgi/content/abstract/294/5547/1684; Jeffrey D. Hartgerink, Elia Beniash, Samuel I. Stupp, “Peptide-amphiphile nanofibers: A versatile scaffold for the preparation of self-assembling materials,” Proc. Natl. Acad. Sci. (USA) 99(16 April 2002):5133-5138; http://www.pnas.org/cgi/content/full/99/8/5133

2067. H. Chen, M. Banaszak Holl, B.G. Orr, L. Majoros, B.H. Clarkson, “Interaction of dendrimers (artificial proteins) with biological hydroxyapatite crystals,” J. Dent. Res. 82(2003):443-448; http://jdr.iadrjournals.org/cgi/content/full/82/6/443

2068. I.A. Banerjee, L. Yu, H. Matsui, “Cu nanocrystal growth on peptide nanotubes by biomineralization: Size control of Cu nanocrystals by tuning peptide conformation,” Proc. Natl. Acad. Sci. (USA) 100(2003):14678-14682; http://www.pnas.org/cgi/content/full/100/25/14678

2069. Steven S. Smith, “A self-assembling nanoscale camshaft: Implications for nanoscale materials and devices constructed from proteins and nucleic acids,” Nano Lett. 1(2001):51-56.

2070. G.D. Bachand, C.D. Montemagno, “Constructing organic/inorganic NEMS devices powered by bio-molecular motors,” Biomedical Microdevices 2(2000):179-184.

2071. C.D. Montemagno, G.D. Bachand, “Constructing nanomechanical devices powered by biomolecular motors,” Nanotechnology 10(September 1999):225-231; Carlo D. Montemagno, George D. Bachand, Scott J. Stelick, Marlene Bachand, “Constructing biological motor powered nanomechanical devices,” 6th Foresight Conference on Molecular Nanotechnology, November 1998; http://www.foresight.org/Conferences/MNT6/Papers/Montemagno/index.html

2072. R.K. Soong, G.D. Bachand, H.P. Neves, A.G. Olkhovets, H.G. Craighead, C.D. Montemagno, “Powering an inorganic nanodevice with a biomolecular motor,” Science 290(24 November 2000):1555-1558; R.K. Soong, S.J. Stelick, G.D. Bachand, C.D. Montemagno, “Evaluating adhesion strength of biological molecules to nanofabricated substrates,” Technical Proceedings of the Second Conference on Modeling and Simulation of Microsystems, 1999 Conference, Puerto Rico, 1999.

2073. Haiqing Liu, Jacob J. Schmidt, George D. Bachand, Shahir S. Rizk, Loren L. Looger, Homme W. Hellinga, Carlo D. Montemagno, “Control of a biomolecular motor-powered nanodevice with an engineered chemical switch,” Nat. Mater. 1(November 2002):173-177.

2074. Werner Kliche, Setsuko Fujita-Becker, Martin Kollmar, Dietmar J. Manstein, F. Jon Kull, “Structure of a genetically engineered molecular motor,” EMBO J. 20(15 January 2001):40-46; http://emboj.oupjournals.org/cgi/content/full/20/1/40

2075. R. Andrew McMillan, Chad D. Paavola, Jeanie Howard, Suzanne L. Chan, Nestor J. Zaluzec, Jonathan D. Trent, “Ordered nanoparticle arrays formed on engineered chaperonin protein templates,” Nat. Mater. 1(December 2002):247-252. See also: http://amesnews.arc.nasa.gov/releases/2002/02_122AR.html and http://amesnews.arc.nasa.gov/releases/2002/02images/bionano/bionano.html

2076. N. Kessler, D. Perl-Treves, L. Addadi, “Monoclonal antibodies that specifically recognize crystals of dinitrobenzene,” FASEB J. 10(October 1996):1435-1442.

2077. M. Kam, D. Perl-Treves, R. Sfez, L. Addadi, “Specificity in the recognition of crystals by antibodies” J. Mol. Recognit. 7(December 1994):257-264; M. Kam, D. Perl-Treves, D. Caspi, L. Addadi, “Antibodies against crystals,” FASEB J. 6(May 1992):2608-2613.

2078. P. Hasselbacher, H.R. Schumacher, “Immunoglobulin in tophi and on the surface of monosodium urate crystals,” Arthritis Rheum. 21(April 1978):353-361; P. Hasselbacher, “Binding of IgG and complement protein by monosodium urate monohydrate and other crystals,” J. Lab. Clin. Med. 94(October 1979):532-541; F. Kozin, D.J. McCarty, “Molecular orientation of immunoglobulin G adsorbed to microcrystalline monosodium urate monohydrate,” J. Lab. Clin. Med. 95(January 1980):49-58; T. Bardin, P. Varghese Cherian, H.R. Schumacher, “Immunoglobulins on the surface of monosodium urate crystals: an immunoelectron microscopic study,” J. Rheumatol. 11(June 1984):339-341.

2079. J.M. Verdier, K.V. Ewart, M. Griffith, C.L. Hew, “An immune response to ice crystals in North Atlantic fishes,” Eur. J. Biochem. 241(1 November 1996):740-743.

2080. M. Gross, “Molecular recognition. Crystallographic antibodies,” Nature 373(12 January 1995):105-106.

2081. D. Perl-Treves, N. Kessler, D. Izhaky, L. Addadi, “Monoclonal antibody recognition of cholesterol monohydrate crystal faces,” Chem. Biol. 3(July 1996):567-577.

2082. N. Busch, F. Lammert, S. Matern, “Biliary secretory immunoglobulin A is a major constituent of the new group of cholesterol crystal-binding proteins,” Gastroenterology 115(July 1998):129-138; D. Izhaky, L. Addadi, “Stereoselective interactions of a specialized antibody with cholesterol and epicholesterol monolayers,” Chemistry 6(3 March 2000):869-874; M. Geva, D. Izhaky, D.E. Mickus, S.D. Rychnovsky, L. Addadi, “Stereoselective recognition of monolayers of cholesterol, ent-cholesterol, and epicholesterol by an antibody,” Chembiochem. 2(1 April 2001):265-271; F. Lammert, S. Sudfeld, N. Busch, S. Matern, “Cholesterol crystal binding of biliary immunoglobulin A: visualization by fluorescence light microscopy,” World J. Gastroenterol. 7(April 2001):198-202; M. Epple, P. Lanzer, “How much interdisciplinarity is required to understand vascular calcifications? Formulation of four basic principles of vascular calcification,” Z. Kardiol. 90(2001):2-5 (Suppl 3).

2083. J.J. Mond, A. Lees, C.M. Snapper, “T cell-independent antigens type 2,” Annu. Rev. Immunol. 13(1995):655-692.

2084. D.A. Walters, B.L. Smith, A.M. Belcher, G.T. Paloczi, G.D. Stucky, D.E. Morse, P.K. Hansma, “Modification of calcite crystal growth by abalone shell proteins: an atomic force microscope study,” Biophys. J. 72(March 1997):1425-1433.

2085. J.B. Thompson, G.T. Paloczi, J.H. Kindt, M. Michenfelder, B.L. Smith, G. Stucky, D.E. Morse, P.K. Hansma, “Direct observation of the transition from calcite to aragonite growth as induced by abalone shell proteins,” Biophys. J. 79(December 2000):3307-3312; http://www.biophysj.org/cgi/content/full/79/6/3307

2086. S. Brown, M. Sarikaya, E. Johnson, “A genetic analysis of crystal growth,” J. Mol. Biol. 299(9 June 2000):725-735; S. Brown, “Metal-recognition by repeating polypeptides,” Nat. Biotechnol. 15(March 1997):269-272. See also: Rosemary Braun, Klaus Schulten, Dan Heidel, Mehmet Sarikaya, “Molecular Dynamics Study of Inorganic Surface Recognition by Engineered Proteins,” 8th Foresight Conference on Molecular Nanotechnology, November 2000; http://www.foresight.org/Conferences/MNT8/Abstracts/Goddard/index.html

2087. C.F. Verkoelen, B.G. Van Der Boom, J.C. Romijn, “Identification of hyaluronan as a crystal-binding molecule at the surface of migrating and proliferating MDCK cells,” Kidney Int. 58(September 2000):1045-1054. See also: C.F. Verkoelen, B.G. van der Boom, A.B. Houtsmuller, F.H. Schroder, J.C. Romijn, “Increased calcium oxalate monohydrate crystal binding to injured renal tubular epithelial cells in culture,” Am. J. Physiol. 274(May 1998):F958-F965; http://ajprenal.physiology.org/cgi/content/full/274/5/F958

2088. N. Kessler, D. Perl-Treves, L. Addadi, M. Eisenstein, “Structural and chemical complementarity between antibodies and the crystal surfaces they recognize,” Proteins 34(15 February 1999):383-394.

2089. B.X. Chen, S.R. Wilson, M. Das, D.J. Coughlin, B.F. Erlanger, “Antigenicity of fullerenes: antibodies specific for fullerenes and their characteristics,” Proc. Natl. Acad. Sci. (USA) 95(1 September 1998):10809-10813.

2090. David Izhaky, Israel Pecht, “What else can the immune system recognize?” Proc. Natl. Acad. Sci. (USA) 95(29 September 1998):11509-11510.

2091. B.C. Braden, B.F. Erlanger, B.-X. Kirschner, S.R. Wilson, “Monoclonal antibodies to fullerenes,” in N. Martin, M. Maggini, D.M. Guldi, eds., Fullerenes 2000, Volume 9: Functionalized Fullerenes, The Electrochemical Society, Spring 2000, pp. 233-239.

2092. “Anti C60 Fullerene antibody,” Bioactive Fullerenes Research Group, Center for Advanced Materials and nanotechnology, New York University; http://www.nyu.edu/projects/nanotechnology/c60/c60.htm

2093. B.C. Braden, F.A. Goldbaum, B.X. Chen. A.N. Kirschner, S.R. Wilson, B.F. Erlanger, “X-ray crystal structure of an anti-buckminsterfullerene antibody fab fragment: biomolecular recognition of C60,” Proc. Natl. Acad. Sci. (USA) 97(24 October 2000):12193-12197; http://www.pnas.org/cgi/content/full/97/22/12193

2094. Stephen R. Wilson, Austin N. Kirschner, Bernard F. Erlanger, Bradford C. Braden, presentation at NanoSpace 2000, reported by R. Dagani, “NASA Goes Nano,” Chem. Eng. News 78(28 February 2000):39-42. See also: http://www.nyu.edu/projects/nanotechnology/nanotube/nanotube.htm

2095. Stephen R. Wilson, Bernard Erlanger, Bradford Braden, Austin N. Kirschner, “Fullerene Nanotools from Biology,” 9th Foresight Conference on Molecular Nanotechnology, November 2001; http://www.foresight.org/Conferences/MNT9/Abstracts/Wilson/index.html. See also: Bernard F. Erlanger, “Recognition of Single Wall Carbon Nanotubes by an Anti-Fullerene Antibody,” Nanotech and Biotech Convergence-2002, 6-7 May 2000, Stamford, CT, May 7th Session; http://www.bccresearch.com/nanobio2002/.

2096. “Carbon nanotube antibody,” Carbon Nanotube Research Group, Center for Advanced Materials and nanotechnology, New York University; http://www.nyu.edu/projects/nanotechnology/nanotube/nanotube.htm

2097. William A. Goddard, III, Nagarajan Vaidehi, Wely Floriano, Brian Palmer, Changmoon Park, Deepshika Datta, “ Bionanotechnology – de novo simulations and design,” lecture at the 8th Foresight Conference on Molecular Nanotechnology, November 2000; http://www.foresight.org/Conferences/MNT8/Abstracts/Goddard/index.html

2098. Andreas Skiebe, Andreas Hirsch, Holger Klos, Bernd Gotschy, “[DBU]C60. Spin pairing in a fullerene salt,” Chem. Phys. Lett. 220(1994):138-140.

2099. Ramakrishnan Subramanian, Pierre Boulas, M.N. Vijayshee, Francis D’Souzaj, M. Thomas Jones, Karl M. Kadish, “A Facile and Selective Method for the Solution-phase Generation of C60- and C60-2,” J. Chem. Soc. Chem. Commun. (1994):1847-1848.

 


Last updated on 1 August 2005