Nanofactory |
|
Annotated Bibliography on Diamond Mechanosynthesis This bibliography of diamond mechanosynthesis is an updated, expanded and annotated version of a similar earlier bibliography that was first assembled by Freitas on 16 December 2003 and posted online at the Foresight Institute website. It now includes references to mechanosynthetic fabrication employing the broader range of diamondoid materials.
Molecular
Manipulation for Mechanosynthesis (Theory) Hydrogen
Abstraction Tools (Theory) Hydrogen
Donation Tools (Theory) Diamond
Mechanosynthesis Tools (Theory) Silicon/Germanium
Mechanosynthesis Tools (Theory) Other
DMS Tool and Related Studies (Theory)
|
Molecular Manipulation for Mechanosynthesis (Theory) K.
Eric Drexler, “Molecular
engineering: an approach to the development of general capabilities
for molecular manipulation,” Proc. Natl. Acad. Sci.
(USA) 78(September 1981):5275-5278. H.H.
Farrell, M. Levinson, “Scanning
tunneling microscope as a structure-modifying tool,” Phys.
Rev. B 31(March 1985):3593-3598; http://prola.aps.org/abstract/PRB/v31/i6/p3593_1
(abstract) Robert
Gomer, “Possible mechanisms
of atom transfer in scanning tunneling microscopy,” IBM
J. Res. Dev. 30(July 1986):428-430; http://www.research.ibm.com/journal/rd/304/ibmrd3004L.pdf K.
Eric Drexler, John S. Foster, “Synthetic
tips,” Nature 343(15 February 1990):600. K.
Eric Drexler, “Molecular
tip arrays for molecular imaging and nanofabrication,” J.
Vac. Sci. Technol. B 9(March 1991):1394-1397; http://link.aip.org/link/?JVTBD9/9/1394/1
(abstract) K.
Eric Drexler, Nanosystems:
Molecular Machinery, Manufacturing, and Computation,
John Wiley & Sons, New York, 1992; http://e-drexler.com/p/04/04/0417nanosystemsDesc.html Ralph
C. Merkle, “Molecular
manufacturing: adding positional control to chemical synthesis,”
Chem. Design Automation News 8(September-October
1993):1; http://www.zyvex.com/nanotech/CDAarticle.html K.
Eric Drexler, “Molecular Nanomachines:
Physical Principles and Iimplementation Strategies,” Annu.
Rev. Biophys. Biomol. Struct. 23(June 1994):377-405;
http://arjournals.annualreviews.org/doi/abs/10.1146/annurev.bb.23.060194.002113
(first page) Ralph
C. Merkle, “Molecular
building blocks and development strategies for molecular nanotechnology,”
Nanotechnology 11(2000):89-99;
http://www.zyvex.com/nanotech/mbb/mbb.html Vasilii
I. Artyukhov, “A six degree
of freedom nanomanipulator design based on carbon nanotube bundles,”
Nanotechnology 21(2010):385304;
http://iopscience.iop.org/0957-4484/21/38/385304/pdf/0957-4484_21_38_385304.pdf Robert
A. Freitas Jr., “Chapter
11. Diamondoid Mechanosynthesis for Tip-Based Nanofabrication,”
in Ampere Tseng, ed., Tip-Based Nanofabrication: Fundamentals
and Applications, Springer, New York, 2011, pp. 387-400;
http://www.molecularassembler.com/Papers/Freitas-Tseng2011.pdf
(online PDF) A.
Herman, “Tip-Based Nanofabrication
as a Rapid Prototyping Tool for Quantum Science and Technology,”
Reviews in Theor. Sci. 1(March 2013):3-33;
http://www.ingentaconnect.com/content/asp/rits/2013/00000001/00000001/art00002
(abstract)
|
Molecular Manipulation for Mechanosynthesis (Experimental) D.M.
Eigler, E.K. Schweizer, “Positioning
Single Atoms with a Scanning Tunnelling Microscope,” Nature
344(5 April 1990):524-526;
http://www.nature.com/nature/journal/v344/n6266/abs/344524a0.html
(abstract) Wilson
Ho, Hyojune Lee, “Single
bond formation and characterization with a scanning tunneling microscope,”
Science 286(26 November 1999):1719-1722;
http://www.physics.uci.edu/~wilsonho/stm-iets.html Saw-Wai
Hla, Ludwig Bartels, Gerhard Meyer, Karl-Heinz Rieder, “Inducing
All Steps of a Chemical Reaction with the Scanning Tunneling Microscope
Tip: Towards Single Molecule Engineering,” Phys.
Rev. Lett. 85(September 2000):2777-2780;
http://prola.aps.org/abstract/PRL/v85/i13/p2777_1
(abstract), http://www.phy.ohiou.edu/~hla/HLA2000-2.pdf
(paper) Saw-Wai
Hla, Karl-Heinz Rieder, “Engineering
of single molecules with a scanning tunneling microscope tip,”
Superlattices and Microstructures 31(2002):63-72;
http://www.phy.ohiou.edu/~hla/20.pdf Saw-Wai
Hla, Karl-Heinz Rieder, “STM
control of chemical reactions: single-molecule synthesis,” Annu.
Rev. Phys. Chem. 54(2003):307-330; http://www.phy.ohiou.edu/~hla/HLA-annualreview.pdf Anne-Sophie
Duwez, Stephane Cuenot, Christine Jérôme, Sabine Gabriel,
Robert Jérôme, Stefania Rapino, Francesco Zerbetto, “Mechanochemistry:
Targeted Delivery of Single Molecules,” Nature Nanotechnology
1(October 2006):122-125;
http://www.nature.com/nnano/journal/v1/n2/full/nnano.2006.92.html A.
Deshpande, H. Yildirim, A. Kara, D.P. Acharya, J. Vaughn, T.S. Rahman,
S.-W. Hla, “Atom-By-Atom
Extraction Using the Scanning Tunneling Microscope Tip-Cluster Interaction,”
Phys. Rev. Lett. 98(11 January 2007):028304;
http://www.phy.ohiou.edu/%7Ehla/HLA-46.pdf
(paper),
http://www.phy.ohiou.edu/%7Ehla/atom-extract/atom-extract.htm
(STM movie) S.K.
Kufer, E.M. Puchner, H. Gumpp, T. Liedl, H.E. Gaub, “Single-Molecule
Cut-and-Paste Surface Assembly,” Science
319(1 February 2008):594-596; http://www.sciencemag.org/cgi/content/full/319/5863/594
(paper) Ying
Jiang, Qing Huan, Laura Fabris, Guillermo C. Bazan, Wilson Ho, “Submolecular
control, spectroscopy and imaging of bond-specific chemistry in single
functionalized molecules,” Nature Chemistry
5(2013):36-41; http://www.nature.com/nchem/journal/v5/n1/full/nchem.1488.html
(paper) |
Hydrogen Abstraction Tools (Theory) Michael
Page, Donald W. Brenner,
“Hydrogen abstraction from a diamond surface: Ab initio
quantum chemical study using constrained isobutane as a model,”
J. Am. Chem. Soc. 113(1991):3270-3274; http://pubs.acs.org/cgi-bin/abstract.cgi/jacsat/1991/113/i09/f-pdf/f_ja00009a008.pdf
(first page) Charles
B. Musgrave, Jason K. Perry, Ralph C. Merkle, William A. Goddard III,
“Theoretical studies of
a hydrogen abstraction tool for nanotechnology,” Nanotechnology
2(1991):187-195; http://www.zyvex.com/nanotech/Habs/Habs.html Xiao
Yan Chang, Martin Perry, James Peploski, Donald L. Thompson, Lionel
M. Raff, “Theoretical studies of
hydrogen-abstraction reactions from diamond and diamond-like surfaces,”
J. Chem. Phys. 99(15 September 1993):4748-4758;
http://link.aip.org/link/?JCPSA6/99/4748/1
(abstract) Susan
B. Sinnott, Richard J. Colton, Carter T. White, Donald W. Brenner,
“Surface patterning by
atomically-controlled chemical forces: molecular dynamics simulations,”
Surf. Sci. 316(1994):L1055-L1060; http://www.mse.ncsu.edu/CompMatSci/papers/N1_science.pdf D.W.
Brenner, S.B. Sinnott, J.A. Harrison, O.A. Shenderova, “Simulated
engineering of nanostructures,” Nanotechnology
7(1996):161-167; http://www.zyvex.com/nanotech/nano4/brennerPaper.pdf A.
Ricca, C.W. Bauschlicher Jr., J.K. Kang, C.B. Musgrave, “Hydrogen
abstraction from a diamond (111) surface in a uniform electric field,”
Surf. Sci. 429(1999):199-205. Berhane
Temelso, C. David Sherrill, Ralph C. Merkle, Robert A. Freitas Jr.,
“High-level Ab Initio
Studies of Hydrogen Abstraction from Prototype Hydrocarbon Systems,”
J. Phys. Chem. A 110(28 September 2006):11160-11173;
http://pubs.acs.org/doi/abs/10.1021/jp061821e
(ACS abstract), http://www.MolecularAssembler.com/Papers/TemelsoHAbst.pdf
(paper). L.
Srinivasakannan, S. Kulandaivelu, M. Wuppalamarthi, “Terminal
alkynes as a position abstraction tool for the preparation of nano
materials ,” International Conference on Nanoscience and Nanotechnology
2008 (ICONN 2008), 25-29 February 2008, pp. 75-78; http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4639249
(abstract)
|
Hydrogen Abstraction Tools (Experimental) J.W.
Lyding, K. Hess, G.C. Abeln, D.S. Thompson, J.S. Moore, M.C. Hersam,
E.T. Foley, J. Lee, Z. Chen, S.T. Hwang, H. Choi, P.H. Avouris, I.C.
Kizilyalli, “UHV-STM nanofabrication
and hydrogen/deuterium desorption from silicon surfaces: implications
for CMOS technology,” Appl. Surf. Sci.
130(June 1998):221-230. E.T.
Foley, A.F. Kam, J.W. Lyding, P.H. Avouris, “Cryogenic
UHV-STM Study of Hydrogen and Deuterium Desorption from Si(100),”
Phys. Rev. Lett. 80(1998):1336-1339; http://prola.aps.org/abstract/PRL/v80/i6/p1336_1
(abstract) M.C.
Hersam, G.C. Abeln, J.W. Lyding, “An
approach for efficiently locating and electrically contacting nanostructures
fabricated via UHV-STM lithography on Si(100),” Microelectronic
Engineering 47(June 1999):235-237. L.J.
Lauhon, W. Ho, “Inducing
and Observing the Abstraction of a Single Hydrogen Atom in Bimolecular
Reactions with a Scanning Tunneling Microscope,” J.
Phys. Chem. 105(2000):3987-3992; http://pubs.acs.org/cgi-bin/abstract.cgi/jpcbfk/2001/105/i18/abs/jp002484r.html
(abstract) K.
Bobrov, A.J. Mayne, A. Hoffman, G. Dujardin, “Atomic-scale
desorption of hydrogen from hydrogenated diamond surfaces using the
STM,” Surface Science 528(20 March
2003):138-143; http://linkinghub.elsevier.com/retrieve/pii/S0039602802026237
(abstract) Satoshi
Katano, Yousoo Kim, Masafumi Hori, Michael Trenary, Maki Kawai, “Reversible
Control of Hydrogenation of a Single Molecule,” Science
316(29 June 2007):1883-1886; http://www.sciencemag.org/cgi/content/abstract/316/5833/1883
(abstract), http://www.sciencemag.org/cgi/content/full/316/5833/1883
(paper)
|
Hydrogen Donation Tools (Theory) Berhane
Temelso, C. David Sherrill, Ralph C. Merkle, Robert A. Freitas Jr.,
“Ab
Initio Thermochemistry of the Hydrogenation
of Hydrocarbon Radicals Using Silicon, Germanium, Tin and Lead Substituted
Methane and Isobutane,”
J. Phys. Chem. A 111(15 August 2007):8677-8688.
http://pubs.acs.org/doi/abs/10.1021/jp071797k
(ACS abstract), http://www.MolecularAssembler.com/Papers/TemelsoHDon.pdf
(paper).
|
Hydrogen Donation Tools (Experimental) B.J.
McIntyre, M. Salmeron, G.A. Somorjai, “Nanocatalysis
by the tip of a scanning tunneling microscope operating inside a reactor
cell,” Science 265(2 September 1994):1415-1418. Wolfgang
T. Muller, David L. Klein, Thomas Lee, John Clarke, Paul L. McEuen,
Peter G. Schultz, “A strategy
for the chemical synthesis of nanostructures,” Science
268(14 April 1995):272-273. D.H.
Huang, Y. Yamamoto, “Physical
mechanism of hydrogen deposition from a scanning tunneling microscopy
tip,” Appl. Phys. A 64(April 1997):R419-R422. C.
Thirstrup, M. Sakurai, T. Nakayama, M. Aono, “Atomic
scale modifications of hydrogen-terminated silicon 2 x 1 and 3 x 1
(001) surfaces by scanning tunneling microscope,” Surf.
Sci. 411(1998):203-214. Taleana
Huff, Hatem Labidi, Mohammad Rashidi, Mohammad Koleini, Roshan Achal,
Mark Salomons, Robert A. Wolkow, “Atomic
White-Out: Enabling Atomic Circuitry Through Mechanically Induced
Bonding of Single Hydrogen Atoms to a Silicon Surface,” ACS
Nano. (18 July 2017); https://arxiv.org/pdf/1706.05287.pdf
|
Diamond Mechanosynthesis Tools (Theory) Stephen
P. Walch, Ralph C. Merkle, “Theoretical
studies of diamond mechanosynthesis reactions,” Nanotechnology
9(December 1998):285-296; http://www.zyvex.com/nanotech/mechanosynthesis.html Fedor
N. Dzegilenko, Deepak Srivastava, Subhash Saini, “Simulations
of carbon nanotube tip assisted mechano-chemical reactions on a diamond
surface,” Nanotechnology 9(December
1998):325-330; http://web.archive.org/web/20000605131223/http://www.nas.nasa.gov/~fedor/node_final.html
Ralph
C. Merkle, Robert A. Freitas Jr., “Theoretical
analysis of a carbon-carbon dimer placement tool for diamond mechanosynthesis,”
J. Nanosci. Nanotechnol. 3(August 2003):319-324;
http://www.MolecularAssembler.com/Papers/JNNDimerTool.pdf
or http://www.rfreitas.com/Nano/JNNDimerTool.pdf
or http://www.rfreitas.com/Nano/DimerTool.htm Jingping
Peng, Robert A. Freitas Jr., Ralph C. Merkle, “Theoretical
analysis of diamond mechanosynthesis. Part I. Stability of C2
mediated growth of nanocrystalline diamond C(110) surface,”
J. Comput. Theor. Nanosci. 1(March 2004):62-70;
http://www.MolecularAssembler.com/Papers/JCTNPengMar04.pdf David
J. Mann, Jingping Peng, Robert A. Freitas Jr., Ralph C. Merkle, “Theoretical
analysis of diamond mechanosynthesis. Part II. C2 mediated
growth of diamond C(110) surface via Si/Ge-triadamantane dimer placement
tools,” J. Comput. Theor. Nanosci.
1(March 2004):71-80; http://www.MolecularAssembler.com/Papers/JCTNMannMar04.pdf Damian
G. Allis, K. Eric Drexler, “Design
and Analysis of a Molecular Tool for Carbon Transfer in Mechanosynthesis,”
J. Comput. Theor. Nanosci. 2(March 2005):45-55;
http://e-drexler.com/d/05/00/DC10C-mechanosynthesis.pdf Jingping
Peng, Robert A. Freitas Jr., Ralph C. Merkle, James R. Von Ehr, John
N. Randall, George D. Skidmore, “Theoretical
Analysis of Diamond Mechanosynthesis. Part III. Positional C2
Deposition on Diamond C(110) Surface using Si/Ge/Sn-based Dimer Placement
Tools,” J. Comput. Theor. Nanosci.
3(February 2006):28-41; http://www.MolecularAssembler.com/Papers/JCTNPengFeb06.pdf Robert
A. Freitas Jr., Damian G. Allis, Ralph C. Merkle, “Horizontal
Ge-Substituted Polymantane-Based C2 Dimer Placement Tooltip
Motifs for Diamond Mechanosynthesis,” J. Comput.
Theor. Nanosci. 4(May 2007):433-442;
http://www.MolecularAssembler.com/Papers/DPTMotifs.pdf K. Eric Drexler, “A Molecular Tool for Carbon Transfer in Mechanosynthesis,” Solid State Phenomena 121-123(2007):867-868; http://www.scientific.net/SSP.121-123.867 (abstract and first page) Robert
A. Freitas Jr., “A
Simple Tool for Positional Diamond Mechanosynthesis, and its Method
of Manufacture,” U.S. Patent No. 7,687,146,
issued 30 March 2010; http://www.MolecularAssembler.com/Papers/US7687146.pdf Damian
G. Allis, Brian Helfrich, Robert A. Freitas Jr., Ralph C. Merkle,
“Analysis of Diamondoid
Mechanosynthesis Tooltip Pathologies Generated via a Distributed Computing
Approach,” J. Comput. Theor. Nanosci.
8(July 2011):1139-1161; http://www.ingentaconnect.com/content/asp/jctn/2011/00000008/00000007/art00009
(abstract), http://www.molecularassembler.com/Papers/AllisHelfrichFreitasMerkle2011.pdf
(paper) A.
Herman, “Toward Mechanosynthesis
of Diamondoid Structures: X. Commercial Capped CNT SPM Tip as Nowadays
Available C2 Dimer Placement Tool for Tip-Based Nanofabrication
,” J. Comput. Theor. Nanosci. 10(September
2013):2113-2122; http://www.ingentaconnect.com/content/asp/jctn/2013/00000010/00000009/art00031
(abstract) |
Silicon/Germanium Mechanosynthesis Tools (Theory) A.
Herman, “Towards mechanosynthesis
of diamondoid structures. I. Quantum-chemical molecular dynamics simulations
of silaadamantane synthesis on hydrogenated Si(111) surface with the
STM,” Nanotechnology 8(September 1997):132-144. A.
Herman, “Towards mechanosynthesis
of diamondoid structures. II. Quantum-chemical molecular dynamics
simulations of mechanosynthesis on an hydrogenated Si(111) surface
with STM,” Modeling Simul. Mater. Sci. Eng.
7(January 1999):43-58; http://www.iop.org/EJ/abstract/0965-0393/7/1/004
(abstract) A.
Herman, “Toward Mechanosynthesis
of Diamondoid Structures: III. Quantum-Chemical Study of Silylene
Molecule and Silicon Atom Transfer Mechanism from Caped SWCNT STM
Tip to the Reaction Center on a Hydrogenated Si(111) Surface,”
J. Comput. Theor. Nanosci. 6(October 2009):2217-2223;
http://www.ingentaconnect.com/content/asp/jctn/2009/00000006/00000010/art00014
(abstract) A.
Herman, “Towards Mechanosynthesis
of Diamondoid Structures: IV. The Strategy for Preliminary Implementation
of Ellenbogen's “Matter as Software” Concept ,”
J. Comput. Theor. Nanosci. 7(June 2010):1000-1010;
http://www.ingentaconnect.com/content/asp/jctn/2010/00000007/00000006/art00005
(abstract) A.
Herman, “Toward Mechanosynthesis
of Diamondoid Structures: V. Silicon as the Material of Choice for
Preliminary Implementation of Intermediate Generation of Nano-Machine
Systems,” J. Comput. Theor. Nanosci.
7(August 2010):1482-1485; http://www.ingentaconnect.com/content/asp/jctn/2010/00000007/00000008/art00022
(abstract) A.
Herman, “Toward Mechanosynthesis
of Diamondoid Structures: VI. Quantum-Chemical Molecular Dynamics
Comparison of Conditions for the STM Tip Driven Mechanosynthesis on
Hydrogenated Si(111), Si(110) and Si(100) Surfaces,” J.
Comput. Theor. Nanosci. 7(November 2010):2360-2366;
http://www.ingentaconnect.com/content/asp/jctn/2010/00000007/00000011/art00015
(abstract) A.
Herman, “Toward Mechanosynthesis
of Diamondoid Structures: VII. Simple Strategy of Building Atomically
Perfect SPM Tip Through Attachment of C60 Molecule to Commercial Silicon
Tip by Controlled Hydrogen Atom Desorption from Tip Asperity Si(111)
Silicon Surface,” J. Comput. Theor. Nanosci.
8(September 2011):1703-1709; http://www.ingentaconnect.com/content/asp/jctn/2011/00000008/00000009/art00010
(abstract) A.
Herman, “Toward Mechanosynthesis
of Diamondoid Structures: VIII. Quantum-Chemical Molecular Dynamics
Simulations of Hexagonal Silicon-IV Structure Synthesis with STM,”
J. Comput. Theor. Nanosci. 8(October 2011):1982-1985;
http://www.ingentaconnect.com/content/asp/jctn/2011/00000008/00000010/art00014
(abstract) A.
Herman, “Toward Mechanosynthesis
of Diamondoid Structures: IX. Commercial Capped CNT Scanning Probe
Microscopy Tip as Nowadays Available Tool for Silylene Molecule and
Silicon Atom Transfer,” J. Comput. Theor. Nanosci.
9(December 2012):2240-2244; http://www.ingentaconnect.com/content/asp/jctn/2012/00000009/00000012/art00038
(abstract)
|
Silicon/Germanium Mechanosynthesis Tools (Experimental) R.S.
Becker, J.A. Golovchenko, B.S. Swartzentruber, “Atomic-scale
surface modifications using a tunneling microscope,” Nature
325(29 January 1987):419-421; http://www.nature.com/nature/journal/v325/n6103/abs/325419a0.html
(abstract), http://jw.nju.edu.cn/jingpin/courseware/daxuewulixue/register/creferences/ref/24_5.pdf
(paper) In-Whan
Lyo, Phaedon Avouris, “Field-induced
nanometer- to atomic-scale manipulation of silicon surfaces with the
STM,” Science 253(12 July 1991):173-176. M.
Aono, A. Kobayashi, F. Grey, H. Uchida, D.H. Huang, “Tip-sample
interactions in the scanning tunneling microscope for atomic-scale
structure fabrication,” J. Appl. Phys.
32(1993):1470-1477; http://adsabs.harvard.edu/abs/1993JaJAP..32.1470A
(abstract) C.T.
Salling, M.G. Lagally, “Fabrication
of atomic-scale structures on Si(001) surfaces,” Science
265(22 July 1994):502-506; http://www.sciencemag.org/cgi/content/abstract/265/5171/502
(abstract) Dehuan
Huang, Hironaga Uchida, Masakazu Aono, “Deposition
and subsequent removal of single Si atoms on the Si(111)-7x7 surface
by a scanning tunneling microscope,” J. Vac. Sci.
Technol. B 12(July/August 1994):2429-2433. Phaedon
Avouris, “Manipulation of matter
at the atomic and molecular levels,” Acc. Chem.
Res. 28(1995):95-102; http://pubs.acs.org/cgi-bin/abstract.cgi/achre4/1995/28/i03/f-pdf/f_ar00051a002.pdf?sessid=6006l3
(first page) Noriaki
Oyabu, Oscar Custance, Insook Yi, Yasuhiro Sugawara, Seizo Morita,
“Mechanical vertical manipulation
of selected single atoms by soft nanoindentation using near contact
atomic force microscopy,” Phys. Rev. Lett.
90(2 May 2003):176102; http://link.aps.org/abstract/PRL/v90/e176102
(Abstract) http://focus.aps.org/story/v11/st19
(APS story) Morita
S, Sugimoto Y, Oyabu N, Nishi R, Custance O, Sugawara Y, Abe M, “Atom-selective
imaging and mechanical atom manipulation using the non-contact atomic
force microscope,” J. Electron Microsc. (Tokyo)
53(2004):163-168. N.
Oyabu, O. Custance, M. Abe, S. Morita, “Mechanical
Vertical Manipulation of Single Atoms on the Ge(111)-c(2x8) Surface
by Noncontact Atomic Force Microscopy,” Abstracts of Seventh
International Conference on non-contact Atomic Force Microscopy, Seattle,
Washington, USA, 12-15 September, 2004, p.34; http://www.engr.washington.edu/epp/afm/abstracts/15Oyabu2.pdf N.
Oyabu, Y. Sugimoto, M. Abe, O. Custance, S.
Morita, “Lateral manipulation of
single atoms at semiconductor surfaces using atomic force microscopy,”
Nanotechnology 16(2005):S112-S117;
http://iopscience.iop.org/0957-4484/16/3/021/
(Abstract) Noriaki
Oyabu, Pablo Pou, Yoshiaki Sugimoto, Pavel Jelinek, Masayuki Abe,
Seizo Morita, Rubén Pérez, Óscar Custance, “Single
Atomic Contact Adhesion and Dissipation in Dynamic Force Microscopy,”
Phys. Rev. Lett. 96(15 March 2006):106101;
http://link.aps.org/doi/10.1103/PhysRevLett.96.106101
(Abstract) http://netserver-alt.aip.org/epaps/phys_rev_lett/E-PRLTAO-96-034611/AdditionalInformation.pdf
(paper) Sugimoto
Y, Pou P, Abe M, Jelinek P, Perez R, Morita S, Custance O, “Chemical
identification of individual surface atoms by atomic force microscopy,”
Nature 446(1 March 2007):64-67. Sugimoto
Y, Jelinek P, Pou P, Abe M, Morita S, Perez R, Custance O, “Mechanism
for room-temperature single-atom lateral manipulations on semiconductors
using dynamic force microscopy,” Phys. Rev. Lett.
98(9 March 2007):106104. Yoshiaki
Sugimoto, Pablo Pou, Oscar Custance, Pavel Jelinek, Masayuki Abe,
Ruben Perez, Seizo Morita, “Complex
Patterning by Vertical Interchange Atom Manipulation Using Atomic
Force Microscopy,” Science 322(17 October 2008):413-417;
http://www.sciencemag.org/cgi/content/full/322/5900/413
(paper) http://www.sciencemag.org/cgi/content/full/322/5900/413/DC1
(supplement) |
Other DMS Tool and Related Studies (Theory) Ralph
C. Merkle, “A proposed
‘metabolism’ for a hydrocarbon assembler,” Nanotechnology
8(1997):149-162; http://www.zyvex.com/nanotech/hydroCarbonMetabolism.html Fu-He
Wang, Jin-Long Yang, Jia-Ming Li, “Theoretical
study of single-atom extraction using STM,” Phys.
Rev. B 59(1999):16053–16060;
http://prb.aps.org/abstract/PRB/v59/i24/p16053_1 Robert
A. Freitas Jr., Ralph C. Merkle, “A
Minimal Toolset for Positional Diamond Mechanosynthesis,”
J. Comput. Theor. Nanosci. 5(May 2008):760-861;
http://www.MolecularAssembler.com/Papers/MinToolset.pdf Denis
Tarasov, Natalia Akberova, Ekaterina Izotova, Diana Alisheva, Maksim
Astafiev, Robert A. Freitas Jr., “Optimal
Tooltip Trajectories in a Hydrogen Abstraction Tool Recharge Reaction
Sequence for Positionally Controlled Diamond Mechanosynthesis,”
J. Comput. Theor. Nanosci.
7(February 2010):325-353; http://www.molecularassembler.com/Papers/TarasovFeb2010.pdf Denis
Tarasov, Ekaterina Izotova, Diana Alisheva, Natalia Akberova, Robert
A. Freitas Jr., “Structural Stability
of Clean, Passivated, and Partially Dehydrogenated Cuboid and Octahedral
Nanodiamonds up to 2 Nanometers in Size,” J.
Comput. Theor. Nanosci. 8(February 2011):147-167;
http://www.molecularassembler.com/Papers/TarasovFeb2011.pdf Denis
Tarasov, Ekaterina Izotova, Diana Alisheva, Natalia Akberova, Robert
A. Freitas Jr., “Structural Stability
of Clean and Passivated Nanodiamonds having Ledge, Step, or Corner
Features,” J. Comput.
Theor. Nanosci. 9(January 2012):144-158; http://www.molecularassembler.com/Papers/TarasovFeb2012.pdf
Denis
Tarasov, Ekaterina Izotova, Diana Alisheva, Natalia Akberova, Robert
A. Freitas Jr., “Optimal Approach
Trajectories for a Hydrogen Donation Tool in Positionally Controlled
Diamond Mechanosynthesis,” J.
Comput. Theor. Nanosci. 10(September 2013):1899-1907;
http://www.molecularassembler.com/Papers/TarasovSep2013.pdf
|
Other Molecular Manufacturing Related Studies Bryan
W. Wagner, Thomas P. Way, “MolML:
An abstract scripting language for assembly of mechnical nanocomputer
architectures,” 2006 International Conference on Computing in
Nanotechnology (CNAN'06), 2006; http://www.csc.villanova.edu/~tway/publications/wagnerCNAN06.pdf Thomas
P. Way, Tao Tao, “Compiling a Mechanical
Nanocomputer Adder,” International Conference on Computer Design,
2007; http://www.csc.villanova.edu/~tway/publications/wayCDES07.pdf Andres
Jaramillo-Botero, “Molecular manipulator:
Dynamic Design Criteria,” Dekker Encyclopedia of Nanoscience
and Nanotechnology, Second Edition, 2009; http://www.tandfonline.com/doi/abs/10.1081/E-ENN2-120024165
(abstract) Robert
Bogue, “Nanoscale fabrication:
techniques, limitations and future prospects,” Assembly Automation
31(2011):304-308; http://www.ingentaconnect.com/content/mcb/033/2011/00000031/00000004/art00001
(abstract)
|
Written contents of this page © 2006-2017 Robert A. Freitas Jr. and Ralph C. Merkle Image credits: Nanofactory -- © John Burch, Lizard Fire Studios. Copyright applies to all images. |
Last modified on 23 July 2017
since 14 June 2006